- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0001000000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Craig Gutterman†, Edward Grinshpun‡ (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
& Babbitt, W. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Network slicing will allow 5G network operators to o�er a diverse set of services over a shared physical infrastructure. We focus on supporting the operation of the Radio Access Network (RAN) slice broker, which maps slice requirements into allocation of Physical Resource Blocks (PRBs). We �rst develop a new metric, REVA, based on the number of PRBs available to a single Very Active bearer. REVA is independent of channel conditions and allows easy derivation of an individual wireless link’s throughput. In order for the slice broker to e�ciently utilize the RAN, there is a need for reliable and short term prediction of resource usage by a slice. To support such prediction, we construct an LTE testbed and develop custom additions to the scheduler. Using data collected from the testbed, we compute REVA and develop a realistic time series prediction model for REVA. Speci�cally, we present the X-LSTM prediction model, based upon Long Short-Term Memory (LSTM) neural networks. Evaluated with data collected in the testbed, X-LSTM outperforms Autoregressive Integrated Moving Average Model (ARIMA) and LSTM neural networks by up to 31%. X-LSTM also achieves over 91% accuracy in predicting REVA. By using X-LSTM to predict future usage, a slice broker is more adept to provision a slice and reduce over-provisioning and SLA violation costs by more than 10% in comparison to LSTM and ARIMA.more » « less
An official website of the United States government
